Document Name	M1 ⁻	6NWR6 R3 HW1.1 Product Specification			Page No.	1/32	
Document No.				Issue date	2016/08/29	Revision	00

Product Specification

司限公司

To: Quanta Computer Ltd.

Product Name: M116NWN6 R3 H/W1.1

Document Issue Date: 2016/08/29

Note: 1. Please contact InfoVision Company before designing your product based on this product.

2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein.

FQ-7-30-0-009-03C

Document Name	M116NWR6 R3 HW1.1 Product Specification				2/32
Document No.		Issue date	2016/08/29	Revision	00

	Revised Record								
Ver.	Date	Date Revised Content/Summary		Remark					
00	2016/08/29	First finished	All						
				1					
			- 11	赵司					
		HE	展用的						
		带来用人	UNI I						
		THE WARON							
	1	K TILLER ELL							
		WILL							

Document Name	M116NWR6 R3 HW1.1 Proc	6NWR6 R3 HW1.1 Product Specification			
Document No.		Issue date	2016/08/29	Revision	00

CONTENTS

	GENERAL DESCRIPTIONS	4
2.0	ABSOLUTE MAXIMUM RATINGS	6
3.0	OPTICAL CHARACTERISTICS	7
4.0	ELECTRICAL CHARACTERISTICS	11
5.0	MECHANICAL CHARACTERISTICS	19
6.0	RELIABILITY CONDITIONS	22
7.0	PACKAGE SPECIFICATION	23
8.0	LOT MARK	24
9.0	GENERAL PRECAUTION	24
10.0	EDID Table format	27

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	4/32		
Document No.		Issue date	2016/08/29	Revision	00

1.0 General Descriptions

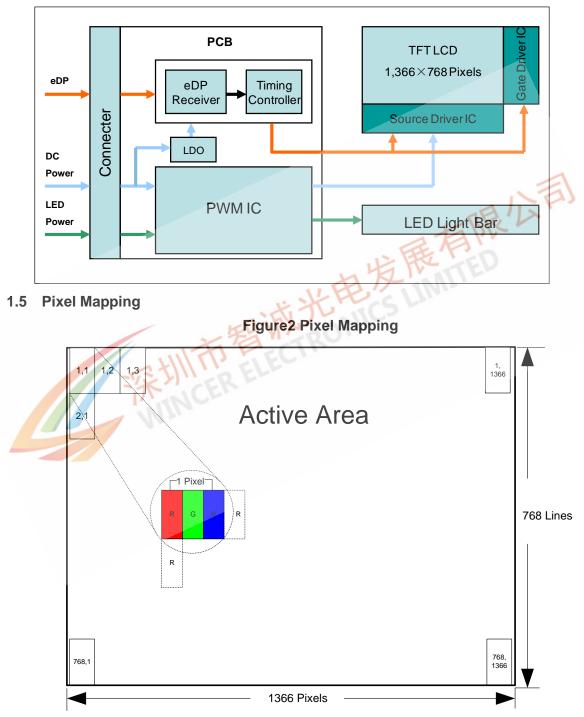
1.1 Introduction

The M116NWR6-R3 is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This model is composed of a TFT LCD panel, a driver circuit and a backlight system. This TFT LCD has a 11.6 inch diagonally measured active display area with HD resolution (1,366 horizontal by 768 vertical pixels array).

1.2 Features

- Supported HD Resolution
- eDP Interface
- Compatible with RoHS Standard

1.3 **Product Summary**


Items	Specifications	Unit
Screen Diagonal	11.6	inch
Active Area (H x V)	256.13 x 144.00	mm
Number of Pixels (H x V)	1,366 x 768	-
Pixel Pitch (H x V)	0.1875x0.1875	mm
Pixel Arrangement	R.G.B. Vertical Stripe	-
Display Mode	Normally White	-
White Luminance	(250)(Typ.)	cd /m ²
Contrast Ratio	500 (Typ.)	-
Response Time	10 (Тур.)	ms
Input Voltage	3.3 (Тур.)	V
Power Consumption	(3.0)(Max.)	W
Weight	210 (Max.)	g
Outline Dimension (H x V x D)	277.80 (Typ.) x 167.00(Typ.) x 3.00 (Max.)	mm
Electrical Interface (Logic)	eDP 1.2	-
Support Color	262 K	-
NTSC	45 (Тур.)	%
Viewing Direction	6 O'clock	-
Surface Treatment	AG+3H	-

Doc	ument Name	M116NWR6 R3 HW1.1 Proc	Page No.	5/32		
Do	cument No.		Issue date	2016/08/29	Revision	00

1.4 Functional Block Diagram

Figure 1 shows the functional block diagram of the LCD module.

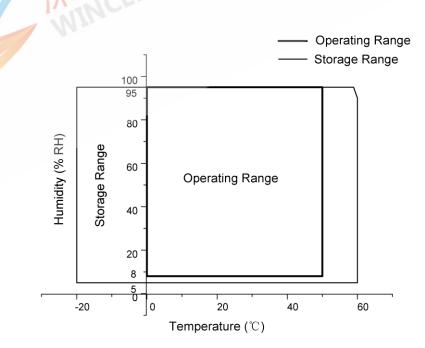
Figure 1 Block Diagram

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	6/32		
Document No.		Issue date	2016/08/29	Revision	00

2.0 Absolute Maximum Ratings

Table 1 Electrical & Environment Absolute Rating

Item	Symbol	Min.	Max.	Unit	Note
Logic Supply Voltage	V _{cc}	-0.3	4.0	V	
Logic Input Signal Voltage	V_{Signal}	-0.3	2.7	V	(1),(2) ,(3),(4)
Operating Temperature	T_{gs}	(0)	(50)	°C	
Storage Temperature	Ta	(-20)	(60)	°C	


Note (1) All the parameters specified in the table are absolute maximum rating values that may cause faulty operation or unrecoverable damage, if exceeded. It is recommended to follow the typical value.

Note (2) All the contents of electro-optical specifications and display fineness are guaranteed under Normal Conditions. All the display fineness should be inspected under normal conditions. Normal conditions are defined as follow: Temperature: 25°C, Humidity: 55±10%RH.

Note (3) Unpredictable results may occur when it was used in extreme conditions. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature. All the display fineness should be inspected under normal conditions.

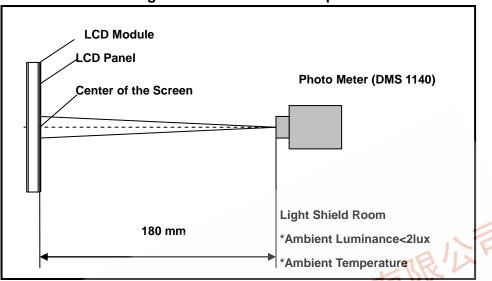
Note (4) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be lower than 39°C, and no condensation of water. Besides, protect the module from static electricity.

Figure 3 Absolute Ratings of Environment of the LCD Module

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	7/32		
Document No.		Issue date	2016/08/29	Revision	00

3.0 Optical Characteristics

The optical characteristics are measured under stable conditions as following notes.

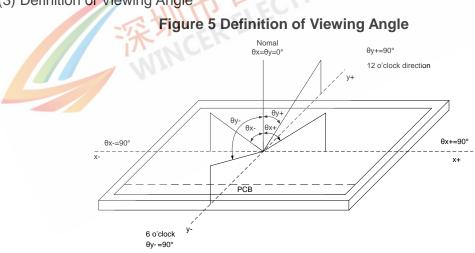

Table 2 Optical Characteristics

Item	Conditions		Min.	Тур.	Max.	Unit	Note
	Horizontal	θ+	35	45	-		
Viewing Angle	HUHZUHIAI	θ "-	35	45	-	dograa	(1) (2) (2) (4) (9)
(CR>10)	Vertical	θ _{y+}	5	15	-	degree	(1),(2),(3),(4),(8)
	Ventical	θ _{y-}	25	35	-		
Contrast Ratio	Center		400	500		-	(1),(2),(4),(8) θx=θy=0°
Response Time	Rising + Fall	ling	-	10	16	ms	(1),(2),(5),(8) θx=θy=0°
	Red x			(0.576)	出限	TEP	
	Red y Green x			(0.346)	Mit		
Color			Тур.	(0.338)	Тур.	-	
Chromaticity	Green y		-0.03	(0.575)	+0.03	-	(1),(2),(3),(8)
(CIE1931)	Blue x	1114	TP ELF	(0.156)		-	θx=θy=0°
(OIE 1001)	Blue y	2	ER	(0.107)		-	
	White x	UN.	(0.283)	(0.313)	(0.343)	-	
	White y		(0.299)	(0.329)	(0.359)	-	
NTSC	-		42	45	-	%	(1),(2),(3),(8) θx=θy=0°
White Luminance	5 Points Ave	erage	(212)	(250)	(313)	cd/m ²	(1),(2),(6),(8) θx=θy=0°
Luminance Uniformity	13 Points		60	-	-	%	(1),(2),(7),(8) θx=θy=0°

Note (1) Measurement Setup:

The LCD module should be stabilized at given ambient temperature (25° C) for 30 minutes to avoid abrupt temperature changing during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in the windless room.

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	8/32		
Document No.		Issue date	2016/08/29	Revision	00


Figure 4 Measurement Setup

Note (2) The LED input parameter setting as:

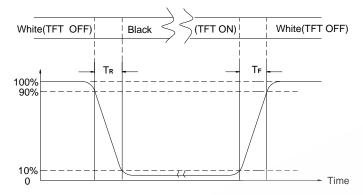
I_LED: (80) mA

PWM_LED: Duty 100%

Note (3) Definition of Viewing Angle

Note (4) Definition Of Contrast Ratio (CR)

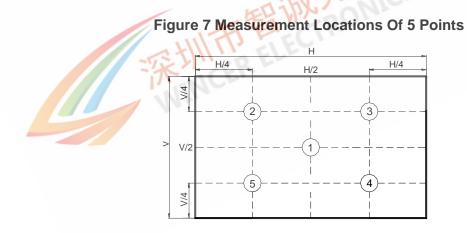
The contrast ratio can be calculated by the following expression:


Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63, L0: Luminance of gray level 0

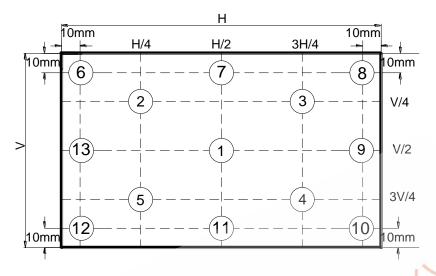
Note (5) Definition Of Response Time (T_R, T_F)

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	9/32		
Document No.		Issue date	2016/08/29	Revision	00


Figure 6 Definition of Response Time

展有限公司

Note (6) Definition Of Luminance White Measure the luminance of gray level 63 (Ref.: Active Area) Display Luminance=(L1+L2+L3+L4+L5) / 5


H-Active Area Width, V-Active Area Height, L-Luminance

Note (7) Definition Of Luminance Uniformity (Ref.: Active Area) Measure the luminance of gray level 63 at 13 points. Luminance Uniformity= Min.(L1, L2, ... L13) / Max.(L1, L2, ... L13) H—Active Area Width, V—Active Area Height, L—Luminance

Figure 8 Measurement Locations Of 13 Points

Document Nar	ne	M116NWR6 R3 HW1.1 Product Specification				10/32
Document No).		Issue date	2016/08/29	Revision	00

Note (8) All optical data based on IVO given system & nominal parameter & testing machine in this document.

智》

深

电反

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	11/32		
Document No.		Issue date	2016/08/29	Revision	00

4.0 Electrical Characteristics

4.1 Interface Connector

Table 3 Signal Connector Type

Item	Description
Manufacturer / Type	JAE HD2S030HA1
Mating Receptacle / Type (Reference)	IPEX 20454-230T

Table 4 Signal Connector Pin Assignment

Pin No.	Symbol	Description	Remarks
1	NC	Reserved for LCD manufacturer's use	1 EL
2	H_GND	High Speed Ground	a la
3	NC	Reserved Complement Signal Link Lane 1	Not used
4	NC	Reserved True Signal Line 1	Not used
5	H_GND	High Speed Ground	-
6	LAN0_N	Complement Signal Link Lane 0	-
7	LLAN0_P	True Signal Line 0	-
8	H_GND	High Speed Ground	-
9	AUX_CH_P	True Signal Auxiliary Ch	-
10	AUX_CH_N	Complement Signal Auxiliary Ch	-
11	H_GND	High Speed Ground	-
12	LCD_VCC	LCD Logic and Driver Power	3.3V(Typ.)
13	LCD_VCC	LCD Logic and Driver Power	3.3V(Typ.)
14	Bist	Reserved BIST function	High Enable
15	LCD_GND	LCD logic and driver ground	-
16	LCD_GND	LCD logic and driver ground	-
17	HPD	HPD Signal Pin	-
18	BL_GND	Backlight ground	-
19	BL_GND	Backlight ground	-
20	BL_GND	Backlight ground	-
21	BL_GND	Backlight ground	-
22	BL_ENABLE	Backlight On/Off	-
23	BL_PWM_DIM	System PWM Signal Input for Diming	-
24	NC	No Connection	-
25	NC	No Connection	-
26	BL_PWR	Backlight Power	12V(Typ.)
27	BL_PWR	Backlight Power	12V(Typ.)

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	12/32		
Document No.		Issue date	2016/08/29	Revision	00

28	BL_PWR	Backlight Power	12V(Typ.)
29	BL_PWR	Backlight Power	12V(Typ.)
30	NC	No Connection	-

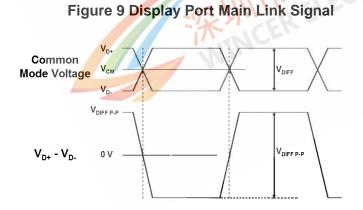
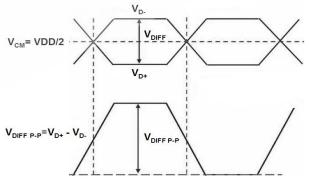

4.2 Signal Electrical Characteristics

Table 5 Display Port Main Link


Parameter	Description	Min.	Тур.	Max.	Unit
V _{CM}	Differentia Common Mode Voltage	0	-	2.0	V
V _{Diff P-P} Level 1	Differential Peak to Peak Voltage Level 1	0.34	0.40	0.46	V
V _{Diff P-P} Level 2	Differential Peak to Peak Voltage Level 2	0.51	0.60	0.68	V
V _{Diff P-P} Level 3	Differential Peak to Peak Voltage Level 3	0.69	0.80	0.92	V
V _{Diff P-P} Level 4	Differential Peak to Peak Voltage Level 4	1.02	1.20	1.38	V

Note: (1) Input signals shall be low or Hi- resistance state when VCC is off.

- (2) It is recommended to refer the specifications of VESA Display Port Standard V1.2 in detail.
- (3) Follow as VESA display port standard V1.2 at both 1.62 and 2.7Gbps link rates.

Figure 10 Display Port AUX_CH Signal

Table 6 Display Port AUX_CH

Parameter	Description	Min.	Тур.	Max.	Unit
V _{CM}	Differentia Common Mode Voltage	0	VCC/2	2	V
V _{Diff P-P}	Differential Peak to Peak Voltage	0.39	-	1.38	V

Note: Follow as VESA display port standard V1.2.

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	13/32		
Document No.		Issue date	2016/08/29	Revision	00

Table 7 Display Port V_{HPD}

Parameter	Description	Min.	Тур.	Max.	Unit
V _{HPD}	HPD Voltage	2.25	-	3.60	V

Note: Follow as VESA display port standard V1.2.

4.3 Interface Timings

Table 8 Interface Timings									
Parameter	Symbol	Min.	Тур.	Max.	Unit				
Clock Frequency	Fclk	50	73.81	80	MHz				
H Total Time	HT	1,520	1,532	1,620	Clocks				
H Active Time	HA		1,366		Clocks				
V Total Time	VT	778	803	830	Lines				
V Active Time	VA		768	20	Lines				
Frame Rate	FV	50	60	65	Hz				
深圳市	戶智 前 ER ELEC	TRONI							

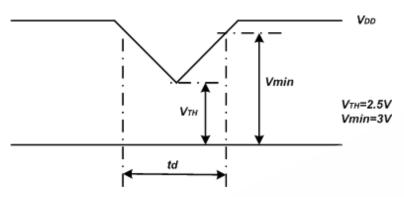
Document Name	M116NWR6 R3 HW1.1 Proc	duct Specifica	ation	Page No.	14/32
Document No.		Issue date	2016/08/29	Revision	00

4.4 Input Power Specifications

Input power specifications are as follows.

Table 9 Input Power Specifications

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
System Powe	r Supply						
LCD Drive Volt	age (Logic)	V _{cc}	3.0	3.3	3.6	V	(1),(2)
VCC Current	Mosaic	I _{cc}	-	-	0.21	А	
VCC Power Consumption	Mosaic	P _{cc}	-	-	0.7	W	(1),(4)
Rush Current		I _{Rush}	-	-	2.0	A	(1),(5)
Allowable Logic/LCD Drive Ripple Voltage		V _{VCC-RP}	-	-	200	RmV	(1),(3)
LED Power St	LED Power Supply						
LED Input Volt	age	V_{LED}	(5)	(12)	(21)	V	(1),(2)
LED Power Co	onsumption	P_{LED}	H. H.	Rig	(2.3)	W	(1),(6)
LED Forward \	/oltage	VF	(2.8)	N	(3.1)	V	
LED Forward 0	Current	TI-	CTK'	(20)	-	mA	
PWM Signal	High	I E	(2.2)	-	-	V	(1) (2)
Voltage	Low	V _{PWM}	-		(0.6)	V	(1),(2)
LED Enable	High	V	(2.2)	-	-	V	
Voltage	Low	$V_{LED_{EN}}$	-	-	(0.6)	V	
Input PWM Fre	equency	F _{PWM}	(200)	-	(1000)	Hz	(1),(2),(7)
Duty Ratio		PWM	(1)	-	(100)	%	(1),(8)
LED Life Time		LT	15,000	-	-	Hours	(1),(9)


Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55 \pm 10\%$ RH.

Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value.

Note (3) VCC Power Dip Condition $V_{TH} < V_{CC} \le V_{min}$, td $\le 10ms$ (a time of the voltage return to normal), our panel can recover automatically.

Document Name	M116NWR6 R3 HW1.1 Product Specification				15/32
Document No.		Issue date	2016/08/29	Revision	00

Figure 11 VCC Power Dip

Note (4) The specified V_{cc} current and power consumption are measured under the V_{cc} = 3.3 V, F_V = 60 Hz condition and Mosaic pattern.

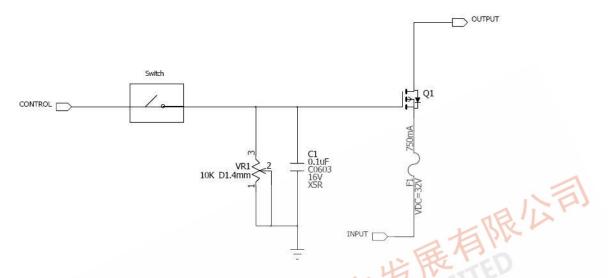

Note (5) The figures below are the measuring condition of V_{CC} and the measuring circuit that IVO display used. Rush current can be measured when T_{RUSH} is 0.5 ms.

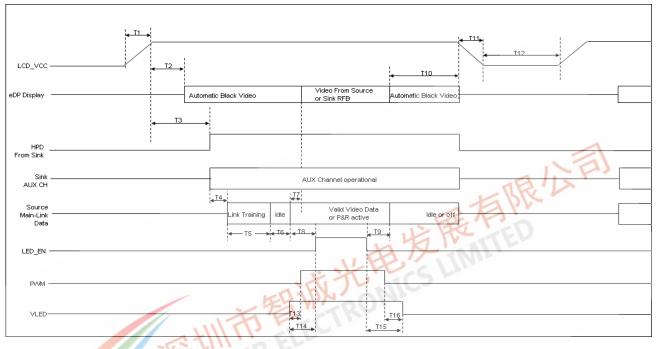
Figure 12 VCC Rising Time

Document Name	M116NWR6 R3 HW1.1 Proc	M116NWR6 R3 HW1.1 Product Specification			
Document No.		Issue date	2016/08/29	Revision	00

Figure 13 Irush measurement circuit

Note (6) The power consumption of LED Driver are under the $V_{LED} = 12.0V$, Dimming of Max luminance.

Note (7) Although acceptable range as defined, the dimming ratio is not effective at all conditions. The PWM frequency should be fixed and stable for more consistent luminance control at any specific level desired.


Note (8) The operation of LED Driver below minimum dimming ratio may cause flickering or reliability issue.

Note (9) The life time is determined as the sum of the lighting time till the luminance of LCD at the typical LED current reducing to 50% of the minimum value under normal operating condition.

Document Name	M116NWR6 R3 HW1.1 Proc	duct Specifica	ation	Page No.	17/32
Document No.		Issue date	2016/08/29	Revision	00

4.5 Power ON/OFF Sequence

Interface signals are also shown in the chart. Signals from any system shall be Hi- resistance state or low level when VCC voltage is off.

Figure 14 Power Sequence

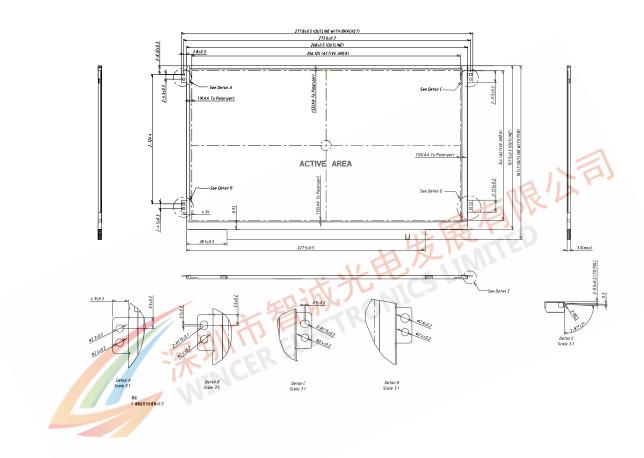
Table 10 Power Sequencing Requirements

Parameter	Symbol	Min.	Тур.	Max.	Unit
VCC Rise Time (10% to 90%)	T1	0.5	-	10	ms
Delay from VCC to automatic Black Video generation	T2	0	-	200	ms
Delay from VCC to HPD high	Т3	0	-	200	ms
Delay from HPD high to link training initialization	T4	-	-	-	ms
Link training duration	T5	-	-	-	ms
Link idle	Т6	-	-	-	ms
Delay from valid video data from Source to video on display	T7	0	-	50	ms
Delay from valid video data from Source to backlight enable	Т8	200	-	-	ms
Delay from backlight disable to end of valid video date	Т9	-	-	-	ms
Delay from end of valid video data from Source to VCC off	T10	0	-	500	ms
VCC fall time (90% to 10%)	T11	0	-	10	ms
VCC off time	T12	500	-	-	ms
Delay from VLED to PWM	T13	0	-	-	ms
Delay from VLED to backlight enable	T14	0	-	-	ms

	Document Name	M116NWR6 R3 HW1.1 Product Specification F					Page	e No.	18/32	
	Document No.	1		ls	ssue date	2016/08/	29	Revi	sion	00
Γ	Delay from backlight disa	ble to VLED off	T15		0	-		-	m	IS
	Delay from PWM off to V	VM off to VLED off			0	-		-	r	IS

Delay from backlight disable to VLED off	T15	0	-	-	ms
Delay from PWM off to VLED off	T16	0	-	-	ms

声音游戏的ICS LINITED RELECTRONICS LINITED


深圳

Document Name	M116NWR6 R3 HW1.1 Proc	duct Specifica	ation	Page No.	19/32
Document No.		Issue date	2016/08/29	Revision	00

5.0 Mechanical Characteristics

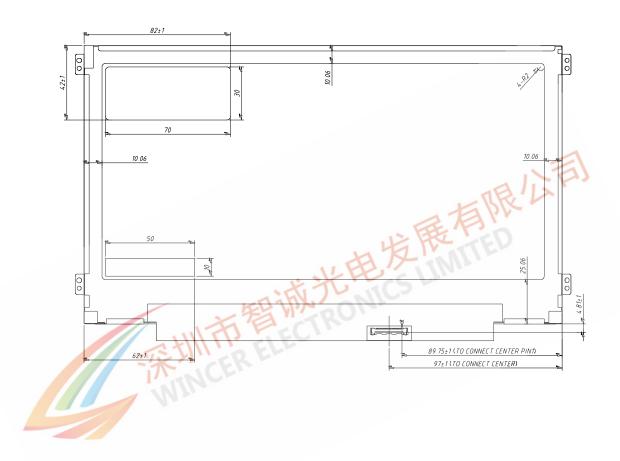

5.1 Outline Drawing

Figure 15 Reference Outline Drawing (Front Side)

Document Name	M116NWR6 R3 HW1.1 Proc	duct Specifica	ation	Page No.	20/32
Document No.		Issue date	2016/08/29	Revision	00

Figure 16 Reference Outline Drawing (Back Side)

Document Name	M116NWR6 R3 HW1.1 Proc	duct Specifica	ation	Page No.	21/32
Document No.		Issue date	2016/08/29	Revision	00

5.2 Dimension Specifications

深圳

Table 11 Module Dimension Specifications

Item	Min.	Тур.	Max.	Unit
Width	277.3	277.8	278.3	mm
Height	166	167	168	mm
Thickness	-	-	3.0	mm
Weight	-	-	210	g

う智協党 代表 展 有限 (公司) 見 に て R ONICS LINITED R ELECTRONICS LINITED

Document Name	M116NWR6 R3 HW1.1 Proc	duct Specifica	ation	Page No.	22/32
Document No.		Issue date	2016/08/29	Revision	00

6.0 Reliability Conditions

Table 12 Reliability Condition

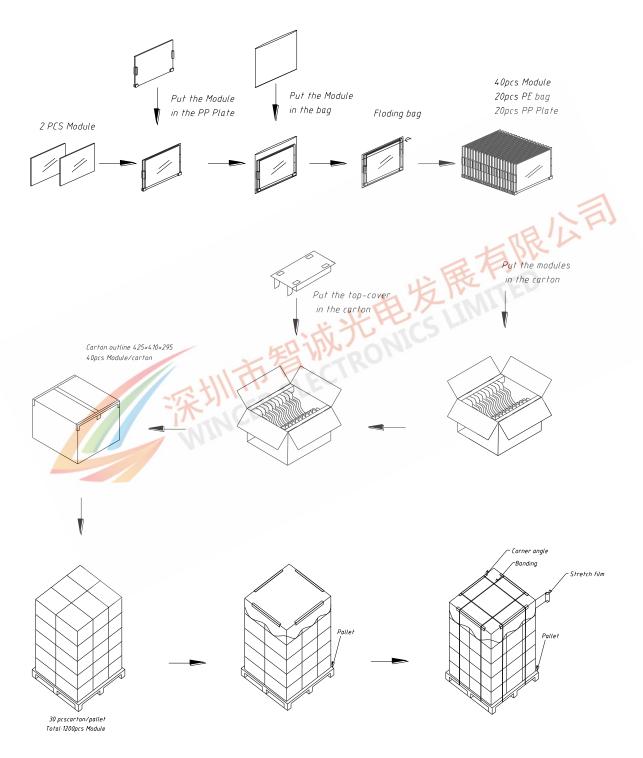
lt	em	Package		Test Conditions	Note			
High Temperatur Operating Test	e/High Humidity	Module	T _{gs} = (50)	$\rm T_{gs}\text{=}(50^\circ\!C)$, (95%RH) , 1000hours				
Thermal Shock N Test	Non-operation	Module	T _a =-25℃ cycle,100	~65℃, 1hr/each Dcycles	(1),(2),(3),(4)			
Low Temperature Operating Test		Module	T _a =0℃, ₹	500hrs				
High Temperature Store Test Modu			T _a =60℃,	240hrs	(1) (2) (4)			
Low Temperature	e Store Test	Module	T _a =-20℃	,240hrs	(1),(3),(4)			
Shock	Operating	Module	aixs/1tim	msec Trapezoidal ±x ±y ±z	(1), (3), (5)			
Vibration	Operating	Module		1.5G,10~200 Hz , $x \cdot y \cdot z$ each axis/0.5hour.				
ESD Test	Operating	Module	Contact Air	± 8 KV, 150pF(330Ohm) ± 15 KV, 150pF(330Ohm)	(1),(2),(6)			

Note (1) A sample can only have one test. Outward appearance, image quality and optical data can only be checked at normal conditions according to the IVO document before reliable test. Only check the function of the module after reliability test.

Note (2) The setting of electrical parameters should follow the typical value before reliability test.

Note (3) During the test, it is unaccepted to have condensate water remains. Besides, protect the module from static electricity.

Note (4) The sample must be released for 24 hours under normal conditions before judging. Furthermore, all the judgment must be made under normal conditions. Normal conditions are defined as follow: Temperature: 25° , Humidity: $55 \pm 10\%$ RH. T_a= Ambient Temperature, T_{gs}= Glass Surface Temperature.


Note (5) The module should be fixed firmly in order to avoid twisting and bending.

Note (6) It could be regarded as pass, when the module recovers from function fault caused by ESD after resetting.

Document Name	M116NWR6 R3 HW1.1 Proc	duct Specifica	ation	Page No.	23/32
Document No.		Issue date	2016/08/29	Revision	00

7.0 Package Specification

Figure 17 Packing Method

Document Name	M116NWR6 R3 HW1.1 Proc	duct Specifica	ation	Page No.	24/32
Document No.		Issue date	2016/08/29	Revision	00

8.0 Lot Mark

IVO M116NWR6	→ Module	Name
	E309667 RoHS Develop	oment Product Name
ZLS0EIN116G72160100	R3 H/W: 2n	d Source / Version
8SSD10M34066V1KS67M0064 S P/N:SD10M34066 FRU:01HW898 607 MAD	FW:0.0 ZB IN CHINA	DID Version
	23 Proc	luct Code
	Custom	er Code
	Lot Mar	k
	此电发应	NITED

Note: These picture are only examples.

8.1 20 Lot Mark

1	2	3	4	5	6	Z	8	9	10	11	12	13	14	15	16	17	18	19	20
---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----

Code 1,2,4,5,6,7,8,9,10,11,16: IVO internal flow control code.

Code 3: Production Location.

Code 12: Production Year.

Code 13: Production Month.

Code 14,15: Production Day.

Code 17,18,19,20: Serial Number.

8.2 23 Product Barcode

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
--

Code 1,2: Manufacture District.

Code 3,4,5,6,7: IVO internal module name.

Code 8,9,10,13,16: IVO internal flow control code.

Code 11,12: Cell location Suzhou, China defined as "KS".

Code 14 ,15: Module location Kunshan, China defined as "KS"; Yangzhou, China defined as "YZ"; Shenzhen, China defined as "SE"; Zhuhai, China defined as "ZH"; Suzhou, China defined as "SZ". Code 17,18,19 : Year, Month, Day refer to Note(1), Note(2) and Note(3).

Note (1) Production Year

Year	2006	2007	2008	2009	2010	2011	2012	2013	 2035
Mark	6	7	8	9	А	В	С	D	 Z

All rights strictly reserved reproduction or issue to third parties in any form what ever is not permitted without written authority from the proprietor.

Document Name	M116NWR6 R3 HW1.1 Proc	duct Specifica	ation	Page No.	25/32
Document No.		Issue date	2016/08/29	Revision	00

Note (2) Production Month

Month	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.
Mark	1	2	3	4	5	6	7	8	9	А	В	С

智诚力

电发展有限公司 NICS LIMITED

Note (3) Production Day: 1~V. Code 20~23 : Serial Number.

Document Name	M116NWR6 R3 HW1.1 Proc	duct Specifica	ation	Page No.	26/32
Document No.		Issue date	2016/08/29	Revision	00

9.0 General Precaution

9.1 Using Restriction

This product is not authorized for using in life supporting systems, aircraft navigation control systems, military systems and any other appliance where performance failure could be life-threatening or lead to be catastrophic.

9.2 Operation Precaution

(1)The LCD product should be operated under normal conditions. Normal conditions are defined as below:

Temperature: 25℃ Humidity: 55±10%

Display pattern: continually changing pattern (Not stationary)

(2) Brightness and response time depend on the temperature. (It needs more time to reach normal brightness in low temperature.)

(3) It is necessary for you to pay attention to condensation when the ambient temperature drops suddenly. Condensate water would damage the polarizer and electrical contacted parts of the module. Besides, smear or spot will remain after condensate water evaporating.

(4) If the absolute maximum rating value was exceeded, it may damage the module.

(5) Do not adjust the variable resistor located on the module.

(6) Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding may be important to minimize the interference.

(7) Image sticking may occur when the module displayed the same pattern for long time.

(8) Do not connect or disconnect the module in the "power on" condition. Power supply should always be turned on/off by the "power on/off sequence"

(9) Ultra-violet ray filter is necessary for outdoor operation.

9.3 Mounting Precaution

(1) All the operators should be electrically grounded and with Ion-blown equipment turning on when

mounting or handling. Dressing finger-stalls out of the gloves is important for keeping the panel clean during the incoming inspection and the process of assembly.

(2) It is unacceptable that the material of cover case contains acetic or chloric. Besides, any other material that could generate corrosive gas or cause circuit break by electro-chemical reaction is not desirable.

(3) The case on which a module is mounted should have sufficient strength so that external force is not transmitted to the module directly.

(4) It is obvious that you should adopt radiation structure to satisfy the temperature specification.

(5) So as to acquire higher luminance, the cable between the back light and the inverter of the power supply should be connected directly with a minimize length.

(6) It should be attached to the system tightly by using all holes for mounting, when the module is assembled. Be careful not to apply uneven force to the module, especially to the PCB on the back.

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	27/32		
Document No.		Issue date	2016/08/29	Revision	00

(7) A transparent protective film needs to be attached to the surface of the module.

(8) Do not press or scratch the polarizer exposed with anything harder than HB pencil lead. In addition, don't touch the pin exposed with bare hands directly.

(9) Clean the polarizer gently with absorbent cotton or soft cloth when it is dirty.

(10) Wipe off saliva or water droplet as soon as possible. Otherwise, it may cause deformation and fading of color.

(11) Desirable cleaners are IPA (Isopropyl Alcohol) or hexane. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.

(12) Do not disassemble or modify the module. It may damage sensitive parts in the LCD module, and cause scratches or dust remains. IVO does not warrant the module, if you disassemble or modify the module.

9.4 Handling Precaution

(1) Static electricity will generate between the film and polarizer, when the protection film is peeled off. It should be peeled off slowly and carefully by operators who are electrically grounded and with Ion-blown equipment turning on. Besides, it is recommended to peel off the film from the bonding area.

(2) The protection film is attached to the polarizer with a small amount of glue. When the module with protection film attached is stored for a long time, a little glue may remain after peeling.(3) If the liquid crystal material leaks from the panel, keep it away from the eyes and mouth. In case of contact with hands, legs or clothes, it must be clean with soap thoroughly.

9.5 Storage Precaution

When storing modules as spares for long time, the following precautions must be executed.

(1) Store them in a dark place. Do not expose to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.

(2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

(3) It is recommended to use it in a short-time period, after it's unpacked. Otherwise, we would not guarantee the quality.

9.6 Others

When disposing LCD module, obey the local environmental regulations.

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	28/32		
Document No.		Issue date	2016/08/29	Revision	00

10.0 EDID Table format

Address (DEC)	Address (HEX)	Field Name & Comments	Value (HEX)	Value (BIN)	Value (DEC)
0	0	Header	00	0	0
1	1	Header	FF	11111111	255
2	2	Header	FF	11111111	255
3	3	Header	FF	11111111	255
4	4	Header	FF	11111111	255
5	5	Header	FF	11111111	255
6	6	Header	FF	11111111	255
7	7	Header	00	00000000	0
8	8	manufacture code	26	00100110	38
9	9	manufacture code 🙀 🏹	CF	11001111	207
10	А	Product Code	8E	10001110	142
11	В	Product Code	04	00000100	4
12	С	LCD module Serial No –("0" if not used)	00	00000000	0
13	D	LCD module Serial No –("0" if not used)	00	00000000	0
14	E	LCD module Serial No –("0" if not used)	00	00000000	0
15	F	LCD module Serial No –("0" if not used)	00	00000000	0
16	10	Week of manufacture	2A	00101010	42
17	11	Year of manufacture	1A	00011010	26
18	12	EDID Structure Ver # = 1	01	00000001	1
19	13	EDID revision # = 3	04	00000100	4
20	14	Video I/P definition = Digital I/P (80h)	95	10010101	149
21	15	Max H image size = (Rounded to cm)	1A	00011010	26
22	16	Max V image size = (Rounded to cm)	0E	00001110	14
23	17	Display Gamma	78	01111000	120
24	18	Feature support (no DPMS, Active off, RGB, timing BLK 1)	0A	00001010	10
25	19	Red/Green Low bits (RxRy/GxGy)	16	00010110	22

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	29/32		
Document No.		Issue date	2016/08/29	Revision	00

26	1A	Blue/White Low bits (BxBy/WxWy)	30	00110000	48
20					
	1B	Red X Rx	91	10010001	145
28	1C	Red Y Ry	56	01010110	86
29	1D	Green X Gx	53	01010011	83
30	1E	Green Y Gy	92	10010010	146
31	1F	Blue X Bx	28	00101000	40
32	20	Blue Y By	1E	00011110	30
33	21	White X Wx	50	01010000	80
34	22	White Y Wy	54	01010100	84
35	23	Established timings 1 (00h if not used)	00	00000000	0
36	24	Established timing 2 (00h if not used)	00	0000000	<u> </u>
37	25	Manufacturer@39;s timings (00h if not used)	00	00000000	0
38	26	Standard timing ID1 (01h if not used)	01	00000001	1
39	27	Standard timing ID1 (01h if not used)	01	00000001	1
40	28	Standard timing ID2 (01h if not used)	01	00000001	1
41	29	Standard timing ID2 (01h if not used)	01	00000001	1
42	2 A	Standard timing ID3 (01h if not used)	01	00000001	1
43	2B	Standard timing ID3 (01h if not used)	01	00000001	1
44	2C	Standard timing ID4 (01h if not used)	01	00000001	1
45	2D	Standard timing ID4 (01h if not used)	01	00000001	1
46	2E	Standard timing ID5 (01h if not used)	01	00000001	1
47	2F	Standard timing ID5 (01h if not used)	01	00000001	1
48	30	Standard timing ID6 (01h if not used)	01	00000001	1
49	31	Standard timing ID6 (01h if not used)	01	00000001	1
50	32	Standard timing ID7 (01h if not used)	01	00000001	1
51	33	Standard timing ID7 (01h if not used)	01	00000001	1
52	34	Standard timing ID8 (01h if not used)	01	00000001	1
53	35	Standard timing ID8 (01h if not used)	01	00000001	1
54	36	Pixel Clock LSB	D5	11010101	213
55	37	Pixel Clock HSB	1C	00011100	28
56	38	Horizontal Active (lower 8 bits)	56	01010110	86
57	39	Hor blanking (lower 8 bits)	A6	10100110	166
58	ЗA	Horizontal Active/Horizontal blanking (upper4:4 bits)	50	01010000	80

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	30/32			
Document No.		Issue date	2016/08/29	Revision	00	

59	3B	Vertcal active(lower 8 bits)	00	00000000	0
60	3C	Vertical blanking(lower 8 bits)	23	00100011	35
61	3D	Vertical Active : Vertical Blanking (upper4:4 bits)	30	00110000	48
62	3E	Horizontal Sync Offset	28	00101000	40
63	3F	Horizontal Sync Pulse Width	20	00100000	32
64	40	Vertical Sync Offset , Sync Width	3C	00111100	60
65	41	Horizontal Vertical Sync Offset/Width upper 2 bits	00	00000000	0
66	42	Horizontal Image Size	00	00000000	0
67	43	Vertical image Size	90	10010000	144
68	44	Horizontal Image Size / Vertical image size	10	00010000	16
69	45	Horizontal Border = (0 for Notebook LCD)	00	00000000	0
70	46	Vertical Border = (0 for Notebook LCD)	00	00000000	0
71	47	Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives,	19	00011 001	25
72	48	Timing Descriptor #2	00	00000000	0
73	49		00	00000000	0
74	4A		00	00000000	0
75	4B		00	00000000	0
76	4C		00	00000000	0
77	4D		00	00000000	0
78	4E		00	00000000	0
79	4F		00	00000000	0
80	50		00	00000000	0
81	51		00	00000000	0
82	52		00	00000000	0
83	53		00	00000000	0
84	54		00	00000000	0
85	55		00	00000000	0
86	56		00	00000000	0
87	57		00	00000000	0

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	31/32		
Document No.		Issue date	2016/08/29	Revision	00

88	58		00	00000000	0
89	59		00	00000000	0
90	5A	Detailed timing/monitor descriptor#3	00	00000000	0
91	5B	Flag	00	00000000	0
92	5C	Flag	00	00000000	0
93	5D	Range limits	FE	11111110	254
94	5E	Flag	00	00000000	0
95	5F	Min. Vertical Freq	49	01001001	73
96	60	Max. Vertical Freq	6E	01101110	110
97	61	Min. Horizontal Freq	66	01100110	102
98	62	Max.Horizontal Freq	6F	01101111	111
99	63	Max. Pixel Clock Freq	56	01010110	86
100	64		69	01101001	105
101	65	54	73	01110011	115
102	66	: HE	69	01101001	105
103	67	FRIED NIC	6F	01101111	111
104	68	TROTE	6E	01101110	110
105	69	New line character indicates end of ASCII string	0A	00001010	10
106	6A	Mue	20	00100000	32
107	6B		20	00100000	32
108	6C	Detailed timing/monitor descriptor #4	00	00000000	0
109	6D		00	00000000	0
110	6E		00	00000000	0
111	6F	FE (hex) defines ASCII string	FE	11111110	254
112	70	Flag	00	00000000	0
113	71	Manufacture P/N	4D	01001101	77
114	72	Manufacture P/N	31	0110001	49
115	73	Manufacture P/N	31	00110001	49
116	74	Manufacture P/N	36	00110110	54
117	75	Manufacture P/N	4E	01001110	78
118	76	Manufacture P/N	57	01010111	87
119	77	Manufacture P/N	52	01010010	82
120	78	Manufacture P/N	36	00110110	54
121	79	Manufacture P/N	20	00100000	32

All rights strictly reserved reproduction or issue to third parties in any form what ever is not permitted without written authority from the proprietor.

Document Name	M116NWR6 R3 HW1.1 Proc	Page No.	32/32		
Document No.		Issue date	2016/08/29	Revision	00

122	7A	Manufacture P/N	52	01010010	82
123	7B	Manufacture P/N	33	00110011	51
124	7C	New line character indicates end of ASCII string	20	00100000	32
125	7D		0A	00001010	10
126	7E	Extension Flag = 00	00	0000000	0
127	7F	Checksum	F3	11110011	243

有得极发展发展和

深圳市